Present and Future Computing Requirements for Ab Initio Calculations of Nuclear Reactions and Light Exotic Nuclei

Large Scale Computing and Storage Requirements for Nuclear Physics (NP): Target 2017

April 29-30, 2014

S. Quaglioni

Contributors:

G. Hupin (LLNL)

P. Navratil, C. Romero-Redondo (TRIUMF)

R. Roth, J. Langhammer (TU Darmstadt)

IM #774417

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Our goal is to develop a fundamental theory for the description of thermonuclear reactions and exotic nuclei

Large-scale computations have already allowed us to describe static properties of nuclei from first principles

- Ab initio no-core shell model (NCSM) approach
 - **Bound states**
 - Two- and three-nucleon (NN+3N) forces based upon **Quantum Chromodynamics**

Helped to point out the fundamental importance of 3N forces in structure calculations.

We extended this approach by adding the dynamics between nuclei with the resonating-group method (RGM)

- Reconstruct the interaction potential between a projectile and a target starting from:
 - Ab initio NCSM wf. of the clusters

- Nucleon-nucleon (NN) interactions
- Solve for projectile-target relative motion
- Investments from: DOE/SC/NP, SciDAC-2 (UNEDEF)

Pioneered ab initio calculations of light-nuclei fusion reactions starting from NN interactions

Started with nucleon-nucleus collisions & gradually built up capability to describe fusion reactions with NN force

Evaluated $n+^3H \rightarrow n+^3H$ cross section for fusion diagnostics with required 5% accuracy

Deuterium-3H & deuterium-3He fusion important for Big Bang nucleosynthesis, fusion research, atomic physics

To do: 3N force; 3-body dynamics

Now including 3N force in reactions and describing continuum of three clusters (DOE/SC/NP Early Career)

3N force needed for high-fidelity simulations

We want to describe systems with 3-body decay channels

From now through 2017: deliver high-fidelity simulations complete of both 3N-force & 3-cluster dynamic effects

- In 2017: ${}^{3}H+{}^{3}H \rightarrow {}^{4}He+n+n$ (fusion research) and ³He+³He+p+p (solar astrophysics)
 - As an intermediate step calculation with only NN interaction

- In 2017: Spectroscopy of Borromean exotic nucleus ¹¹Li as ⁹Li+n+n (FRIB physics)
 - At first ⁶He(=⁴He+n+n) and $(=^3H+n+n)$ with NN+3N force

Our problem, our solution

- Problem: $\sum_{v} \int d\vec{r} \left[H_{v'v}(\vec{r}', \vec{r}) E \ N_{v'v}(\vec{r}', \vec{r}) \right] g_{v}(\vec{r}) = 0$ lamiltonian couplings $\sqrt{r' \cdot \hat{a} \cdot \hat{A}_{v} \cdot$ Hamiltonian couplings couplings
- Input: NN, 3N interactions; projectile, target wave functions
- Compute: Hamiltonian and Overlap couplings
 - Non trivial specialized algebra, depends on projectile mass
 - Sparse matrices; dim = f(# oscillator shells,# projectile nucleons)
 - Sparsity not easily predictable, depends on interaction in input
- Solve: 2-, 3-body coupled-channel equations
 - At each energy step: dense linear algebra
- 4) Output: Scattering matrix, wave functions, phase shifts

Our biggest computational challenges come from couplings depending on many-body densities

Storing in memory many-body density matrices not feasible

- A. Compute and store (coupled) reduced matrix elements
 - Efficient when doable
 - Only very light systems

- $\sum_{\beta} \left\langle \psi_{\alpha_{l}^{\prime}}^{(A-1)} \middle\| (a_{h}^{+}(a_{i}^{+}a_{j}^{+})^{\kappa'\tau'})^{\mathrm{K'T'}} \middle\| \psi_{\beta}^{(A-4)} \right\rangle_{SD}$ $\times \left\langle \psi_{\beta}^{(A-4)} \middle\| ((a_{m}a_{l})^{\kappa\tau}a_{k})^{\mathrm{KT}} \middle\| \psi_{\alpha_{l}}^{(A-1)} \right\rangle_{SD}$
- B. On the fly calculation of (uncoupled) density matrices
 - Well suited for parallel computing
 - Can address heavier systems

$$\left|\psi_{\alpha_{1}}^{(A-1)}\right\rangle_{SD} = \sum_{i} \left|SD\right\rangle_{i}$$

In 2017 we expect to transition more and more towards strategy B.

The primary code is NCSM_RGM, based on strategy A.

- Hybrid MPI/OpenMP
 - up to 98,304 cores on TITAN
- Algorithms include
 - Mostly specialized, in house
 - Matrix multiplications, inversions, diagonalizations
- Recent optimizations include
 - MPI I/O for large input data
 - Hybrid "all slaves" algorithms
 - MKL threaded libraries for dense algebra components

Excellent scaling should continue in larger model spaces (to study)

Current HPC Usage (2012-2013)

- LLNL Institutional Computing Grand Challenge (SIERRA)
 - 1,944 nodes, 12 cores/node
 - 261 teraflop/s, 24 GB/node
- INCITE allocation, PI: J. Vary, co-PI: P. Navratil (TITAN)

NERSC project "m94", PI: J. Vary (Edison, early users)

- ➤ 10M Core-Hrs, ~70 runs/year
- Typically 1,000 MPI tasks and 12 OpenMP threads/task for 12 Hrs
- 23M Core-Hrs, ~50 runs/year
- ➤ Up to 6,144 nodes for 8 Hrs: 12,288 MPI tasks, 8 OpenMP threads/task (98,304 cores)
- 12M Core-Hrs
- Typically 200-600 nodes, i.e. 3 to 10% of machine
- Could use 20% now

Current HPC Usage (2012-2013)

- LLNL Institutional Computing Grand Challenge (SIERRA)
 - 1,944 nodes, 12 cores/node
 - 261 teraflop/s, 24 GB/node
- INCITE allocation, PI: J. Vary, co-PI: P. Navratil (TITAN)

NERSC project "m94", PI: J. Vary (Edison, early users)

- Memory Usage:
 - All memory on the node
 - Need at least 2GB/core
 - Use all global memory
- Data Usage:
 - Input < 100 GB
 - Output < 0.5 TB
 - Use mostly /scrach

HPC Requirements for 2017

- Estimate: 15 x (usage for 3cluster simulations)
- Selected, more challenging science goals
- Concurrent storage of 3N matrix elements & 3-cluster configurations
- Approach under development
- Unprecedented large scale
- Store more scattering data for later use

- Minimum 25M Core-Hrs
- Fewer, larger runs (20-50% of Edison), same typical run time
- Will need all memory on node, i.e., # MPI tasks = # nodes
 - Use threads with OpenMP
- Expect algorithmic changes
- May need more load balancing
- Larger data requirement

Summary

- With HPC we are addressing previously unsolvable problems:
 - ☑ NNN force in light-nucleus reactions
 - ✓ *Ab initio* description of three clusters in the continuum
- More memory, larger core count, larger allocations will allow higher-fidelity simulations of complex reactions & exotic nuclei
 - Solar astrophysics, fusion research, FRIB physics
- To achieve these goals and make optimal use of new HPC architectures we will need the help of NERSC experts!
 - Not yet using GPUs (MPI/OpenMP more adapt to our problem);
 - Not porting/optimizing for MIC (Or are we?);
- Need more SciDAC type of support; dedicated positions to foster new generation of computational+nuclear scientists that can help us keep up with new technologies and reach the exascale

Extras

Accurate nuclear interactions (and currents)

- Nuclear forces are governed by quantum chromodynamics (QCD)
 - QCD non perturbative at low energies
- Chiral effective filed theory (χEFT)
 - retains all symmetries of QCD
 - explicit degrees of freedom: π , N
- Perturbative expansion in positive powers of (Q/Λ_{γ}) «1 $(\Lambda_{\gamma} \sim 1 \text{ Gev})$
 - nuclear interactions
 - nuclear currents
- Chiral symmetry dictates operator structure
- Low-energy constants (LECs) absorb shortrange physics
 - some day all from lattice QCD
 - now constrained by experiment

Major Publications

PRL 110, 022505 (2013)

PHYSICAL REVIEW LETTERS

week ending 11 JANUARY 2013

Ab Initio Description of the Exotic Unbound ⁷He Nucleus

Simone Baroni, 1,2,* Petr Navrátil, 2,3,† and Sofia Quaglioni 3,‡

PHYSICAL REVIEW C 87, 034326 (2013)

\$

Unified ab initio approach to bound and unbound states: No-core shell model with continuum and its application to ⁷He

Simone Baroni, 1,2,* Petr Navrátil, 2,3,† and Sofia Quaglioni 3,‡

PHYSICAL REVIEW C 88, 034320 (2013)

Three-cluster dynamics within an ab initio framework

Sofia Quaglioni, 1,* Carolina Romero-Redondo, 2,† and Petr Navrátil 2,‡

PHYSICAL REVIEW C 88, 054622 (2013)

Ab initio many-body calculations of nucleon-4He scattering with three-nucleon forces

Guillaume Hupin, 1,* Joachim Langhammer, 2,† Petr Navrátil, 3,‡ Sofia Quaglioni, 1,§ Angelo Calci, 2,|| and Robert Roth 2,¶